
Badger Andrew (Orcid ID: 0000-0003-4537-9993) 
Bjarke Nels (Orcid ID: 0000-0002-0006-1060) 
 
 

The sensitivity of runoff generation to spatial snowpack 
uniformity in an alpine watershed: Green Lakes Valley, 

Niwot Ridge Long Term Ecological Research Station 
 

GLV runoff sensitivity to snowpack uniformity 
 
 
A. M. Badger1,2, N. Bjarke3, N. P. Molotch4,5,6, and B. Livneh3,7 

  
1Universities Space Research Association, Columbia, MD, USA 
2NASA Goddard Space Flight Center, Greenbelt, MD, USA 
3Department of Civil, Environmental and Architectural Engineering, University of Colorado 
Boulder, Boulder, CO, 80309. 
4Department of Geography, University of Colorado Boulder, Boulder, CO, 80309. 
5Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, 80309. 
6Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109 
7Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado 
Boulder, Boulder, CO, 80309. 
 
Corresponding author: Andrew M. Badger (andrew.m.badger@nasa.gov)  
 
Acknowledgments 
This research was supported by funding from the National Science Foundation’s Division of 
Environmental Biology (NSF / DEB 1027341). Completion of this work was partially supported 
by NOAA Grant # NA15OAR4310144; NOAA Grant# NA16OAR4310132; NOAA Grant# 
NA19OAR4310284; and NASA Grant # 80NSSC17K0017. The authors would like to thank 
Leanne Lestak for their help in gathering input data for the model setup. 
 
Conflict of Interest Statement 
The authors declare no conflict of interest. 
  

This is the author manuscript accepted for publication and has undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may
lead to differences between this version and the Version of Record. Please cite this article as doi:
10.1002/hyp.14331

This article is protected by copyright. All rights reserved.

http://orcid.org/0000-0003-4537-9993
http://orcid.org/0000-0002-0006-1060
http://dx.doi.org/10.1002/hyp.14331
http://dx.doi.org/10.1002/hyp.14331


 

 

The sensitivity of runoff generation to snowpack distribution uniformity in an alpine 
watershed: Green Lakes Valley, Niwot Ridge Long Term Ecological Research Station 
  
Abstract 
Seasonal water storage in high-elevation alpine catchments are critical sources of water for 
mountainous regions like the western U.S. The spatial distribution of snow in these 
topographically complex catchments is primarily governed by orography, solar radiation, and 
wind redistribution. While the effect of solar shading is relatively consistent from year-to-year, 
the redistribution of snow due to wind is more variable—capable of producing snowpacks that 
have varying degrees of  uniformity across these hydrologically-important catchments. A 
reasonable hypothesis is that a warmer climate will cause snowfall to become more dense (i.e. 
wetter and heavier), possibly leading to less wind redistribution and thus produce a more 
uniformly distributed snowpack across the landscape. In this study, we investigate the role of 
increasingly uniform spatial snowpack distributions on streamflow generation in the Green 
Lakes Valley Niwot Ridge Long Term Ecological Research station, within the headwaters of the 
Boulder Creek watershed in Colorado. A set of idealized hydrologic simulation experiments 
driven by reconstructed snowpacks spanning 2001-2014 show that more a more uniform spatial 
snowpack distribution leads to an earlier melt-out of 31 days on average and tends to produce 
less total streamflow, with maximum decreases as large as 7.5%. Isolating the role of snowpack 
heterogeneity from melt-season precipitation, we find that snowpack uniformity reduces total 
streamflow by as much as 13.2%. Reductions in streamflow are largely explained by greater 
exposure to solar radiation in the uniformly distributed case relative to a more heterogeneous 
snowpack, with this exposure driving shifts towards earlier snowmelt and changes in soil water 
storage. Overall, we find that the runoff efficiency from shallower snowpacks is more sensitive 
to the effects of uniformity than deeper snowpacks, which has potential implications for a 
warming climate where shallower snowpacks and enhanced sensitivities may be present. 
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1. Introduction 

Mountain regions can be understood as the world’s ‘water towers’ (Immerzeel et al., 2010) as 

more water disproportionately originates from these regions than adjacent lowlands (Viviroli et 

al., 2007) with water largely exported as snowmelt. Observed regional warming in the last 

several decades endangers this vital natural reservoir of surface water storage by altering the 

timing and rate of snowmelt (Clow, 2010; Stewart, 2009), but changes to the efficiency of 

snowmelt runoff production is dependent on more complex water-energy fluxes at the regional 

and catchment scales (Hartman et al., 1999; Knowles et al., 2015; Luce et al., 1998, Barnhart et 

al., 2016). A specific knowledge gap is how the impacts of warming driven changes in snowpack 

spatial heterogeneity will affect runoff generation from these important areas. In this respect, 

future warming and increases in snowfall density may increase spatial uniformity of snowpacks 

due to less wind redistribution. In this manuscript, we investigate the impact of greater spatial 

snowpack uniformity on snowmelt-driven runoff efficiency in the high alpine Green Lakes 

Valley catchment part of the Niwot Ridge Long-Term Ecological Research (LTER) site. 

 

In the western United States, observed changes in alpine snowpack and snowmelt timing 

associated with warming climate (Cayan, 1996; Clow, 2010; Hamlet et al., 2005; Mote et al., 

2005; Stewart, 2009) have implications for the future of water resources systems that depend on 

snow as a natural reservoir for storage (Rajagopalan et al., 2009; Vano, 2020). Alpine 

environments, such as the Green Lakes Valley in the headwaters of Boulder Creek watershed in 

Colorado, have been described as among the most vulnerable to climate change (Jones et al., 

2012; Field et al., 2014). The Green Lakes Valley is already experiencing shifts towards earlier 

peak snowmelt (Greenland, 1989; Kittel et al., 2015; Knowles et al., 2015; McGuire et al., 2012) 

consistent with the snowmelt timing trends of the western US more broadly, though temperature 

increase is not the sole driver of changes to snowmelt and subsequent runoff (Hartman et al., 

1999; Luce et al., 1998). The timing and volume of snowmelt within an ablation season is 

dependent on a number of physical factors, in addition to increasing temperatures, including rain 

on snow events (Marks et al., 2001; McCabe et al., 2007), dust on snow events (Deems et al., 

2013; Livneh et al., 2015), and the spatial distribution of snow (Luce et al., 1998, 1999). 



 

 

Critically, these drivers of snowmelt also modulate the runoff efficiency of alpine catchments by 

altering the timing and spatial distribution of catchment water inputs.  

 

After snow is deposited on the ground, the distribution of snowpack across alpine catchments is 

primarily dependent on wind transport (Elder et al., 1991; Essery et al., 1999; Kane et al., 1991a; 

Pomeroy, 1991), solar radiation (Pomeroy et al., 2003), topographic organization (Elder et al., 

1991), orographic effects (Barros & Lettenmaier, 1994; Fontaine et al., 2002), and gravitational 

transport (Freudiger et al., 2017). Of the physical mechanisms that control the distribution of 

snowpack, wind-driven redistribution is unique in both its interannual variability and its 

sensitivity to the composition of the existing snowpack (Li & Pomeroy, 1997). Higher 

temperatures have potential to decrease the lateral transport and redistribution of snow by wind 

due to the associated increase in snowpack density and wetness (Judson & Doesken, 2000). 

Mechanically, Doorschot et al. (2004) and Clifton et al. (2006) find that liquid water enables 

snow grains to adhere to one another more easily, increasing the wind speed needed to transport 

increasingly wet and dense snow. Li and Pomeroy (1997) further explain that wet snow needs 

significantly higher wind speeds for transport because of the viscous forces corresponding to the 

liquid water adhering the snow grains. This decrease in lateral transport of snow is one of the 

potential changes to mountain snowpack within a changing climate (Guyomarc’h & Mérindol, 

1998; Li & Pomeroy, 1997) and is of primary interest for this analysis. Specifically, reduction of 

wind transport of snow across the landscape may result in more uniformly distributed snowpacks 

across alpine catchments, which has the potential to alter the amount of runoff produced during 

the snowmelt season (Hartman et al., 1999; Liston, 1999; Luce et al., 1998) 

 

Previous investigations into the effect of snowpack spatial variability have used observations 

(Kane et al., 1991b) and hydrologic models (Hartman et al., 1999), showing a positive 

relationship between the spatial variability of snowpack and the runoff ratio. However, 

complexity in the process-based simulations of wind redistribution of snow (Essery et al., 1999; 

Essery & Etchevers, 2004; Li & Pomeroy, 1997; Pomeroy, 1991; Winstral et al., 2002) leads to 

simulations of snow distribution that do not accurately predict observed snowpack distribution, 

particularly in complex alpine terrain (Fontaine et al., 2002; Winstral et al., 2002). So, while 

there is value in modeling the redistribution of snow, adding such a complex element may not be 



 

 

necessary to study hydrologic impacts of snowpack distribution; regardless of model complexity, 

the ability to accurately simulate wind distribution of snow is a difficult task in such 

mountainous and complex topography. However, through the manual redistribution of snow, the 

effects of reduced wind redistribution can be seen in a hydrologic model with more experimental 

control and fewer uncertainties introduced.  

 

In this paper, we use the Distributed Hydrology Soil Vegetation Model (DHSVM) to investigate 

the sensitivity of streamflow production to snowpack spatial variability in the Green Lakes 

Valley (GLV), Colorado. We initialize melt-season model simulations with spatial snow 

distributions of increasingly uniform snowpacks relative to a control case that is reflective of 

historical conditions at the time of peak snow water equivalent (SWE). The runoff efficiency – 

the amount of runoff generated from a unit of water input - is evaluated as a way to quantify the 

effects of spatial snowpack uniformity on subsequent snowmelt generated runoff. Simulations 

with and without warm season precipitation are generated in order to further isolate the effects of 

the initial snow distribution on surface water generation from confounding processes that 

modulate snowmelt rate during the ablation season. This fills an important knowledge gap by 

directly evaluating the role of the initial state of the snowpack distribution uniformity on melt-

season streamflow generation, an important topic for a broad audience of water resource 

managers and hydrologists, given the projected increases in regional temperatures over the 

western US in the coming decades that could potentially alter snow redistribution due to wind.  

 

2. Materials and Methods 

We begin by describing the study domain (Sec. 2.1), followed by model inputs and parameter 

settings (Sec. 2.2). The experimental design (Sec. 2.3) is constructed with the goal of evaluating 

how increasingly uniform snow distributions affect runoff efficiency relative to an observation-

based historical control simulation.  

 

2.1 Study domain 

This study focuses on the GLV, located within the U.S. National Science Foundation Niwot 

Ridge LTER site (Figure 1).  The GLV is located approximately 35 km west of Boulder, 

Colorado, bounded on the western-side by the Continental Divide, with the eastward outflow 



 

 

representing a primary water source for the city of Boulder, CO. The GLV is a relatively small 

alpine catchment with an area of 2.3 km2, but with topographic relief spanning elevations of 

3250 m to 3798 m. The annual mean temperature of the region is -3.8°C (Williams et al., 1996) 

and Caine (1996) notes that the region receives approximately 1000 mm of precipitation 

annually, nearly 80% of which falls as snow that accumulates from October to April. Being a 

snowmelt dominated basin, runoff derived from snowmelt accounts for approximately 70% of 

the total annual runoff at the basin gauge (40.049°N, -105.617°E), peaking between late-April 

and mid-July (Caine, 1996).  

 

2.2 Model Description 

The Distributed Hydrology Soil and Vegetation Model (DHSVM; Wigmosta et al., 1994) was 

chosen given its development towards simulating hydrology in steep mountain catchments. 

DHSVM’s treatment of relatively fine scale hydrologic processes, e.g. dynamic lateral routing, 

makes the model uniquely suited for simulating streamflow in topographically complex domains 

(Whitaker et al., 2003; Brooks et al., 2004; Livneh et al., 2014, 2015). The model has an 

intermediate complexity snow model (Raleigh et al., 2016) that resolves a two-layer energy 

balance model for snow accumulation and snowmelt. Soil moisture and surface runoff are 

computed via a multilayer unsaturated soil model and a saturated subsurface flow model. Energy 

transfer and evapotranspiration (ET) are computed via a two-layer canopy representation. The 

model considers the influences of slope and aspect on incoming radiation (shortwave and 

longwave) within the surface energy budget.  

 

In this analysis, DHSVM was configured to run at an hourly time step from 2001 to 2014 at a 20 

m horizontal resolution. These settings were chosen based on the availability of model input 

data. DHSVM inputs include spatial fields of vegetation and monthly phenology, soil depth and 

texture, geology, and topography. Here, these gridded model fields reflect a combination of local 

observations from the Niwot Ridge LTER network and regional-to-national scale datasets (see 

Table 1). DHSVM is additionally provided dynamic observations for solar shading as well as a 

gridded estimate of the mean diurnal cycle of cloud free incoming solar radiation each month, 

derived from a digital elevation model (DEM) used in the model simulations.  

 



 

 

Hourly time-series of meteorological information used to force DHSVM were derived from five 

observation locations within the Niwot Ridge domain (see Figure 1 and Table 2). The prescribed 

meteorological inputs for the model include downwelling shortwave and longwave radiation, 

humidity, wind speed, precipitation, air temperature, and soil temperature. Data continuity issues 

associated with power and instrument failures are a common issue with surface observations in 

extreme climates. To address data gaps associated with these issues, an infilling procedure 

similar to the normal ratio method (NRM; Xia et al., 1999) was performed on the basis of 

weighting station-to-station correlations to derive daily mean values for insertion of missing 

data. Meteorological variables are interpolated to all grid cells automatically within DHSVM 

using a Cressman scheme (Westrick and Mass, 2001) that can be informed by additional spatial 

covariates to distribute the local meteorology. A simulation period of water years 2001-2014 was 

chosen given the greatest number of high-quality meteorological observations available to drive 

DHSVM during the timeframe. It should be noted that DHSVM does not explicitly simulate 

changes to the prevailing climate, but rather the meteorological information used to force 

DHSVM can impose a changing climate. This study does not impose any changes to the climate 

signal (i.e. detrending, increased temperature) in the meteorological forcing, but observable 

trends in the climate may be present in the meteorological forcing. 

 

The melt-season experiments are initialized to an observationally-based estimate of peak SWE 

targeted on May 1 (Figure 2a), which represents the climatological time of peak SWE for the 

GLV. The Jepsen et al. (2012) SWE reconstruction provides an estimate of the yearly maximum 

SWE by integrating modeled snowmelt from the date of maximum SWE to the date of observed 

disappearance using observed meteorology to estimate energy balance calculations. The 12-year 

climatological mean of the SWE reconstruction, 1996-2007, was used to aid in informing the 

Cressman scheme for interpolation of meteorological variables, such that the dynamic hydrologic 

simulations closely match the spatial pattern of the reconstruction on May 1 of each year, while 

allowing for interannual variability in the magnitude of total SWE and other hydrologic states 

like soil moisture each year.  

 

While the Jepsen et al. (2012) SWE reconstruction implicitly accounts for wind redistribution 

based on the date of snow disappearance and energy inputs into the snowpack, DHSVM does not 



 

 

explicitly model wind redistribution processes. Given the numerous uncertainties associated with 

snowpack wind-redistribution, we chose not to model wind redistribution, but instead to initialize 

melt-season simulations to a realistic pattern of spatial variability. Specifically, the model 

experiments (described in Sec. 2.3) assume a given spatial distribution derived from Jepsen et al. 

(2012) with the focus on modeling melt-season snowmelt and associated runoff fluxes under 

prescribed levels of spatial snowpack uniformity.  

 

The majority of the DHSVM soil and snow parameters were obtained from a previous 

application over the Boulder Creek watershed (Livneh et al., 2014; 2015), since the Green Lakes 

Valley lies within this basin. Those past analyses demonstrated realistic simulation of snowmelt 

and streamflow dynamics. The Livneh et al. (2014; 2015) model set up is used here to provide 

initial settings for soil and vegetation parameters.  

 

To optimize our calibration procedure, we used a two-step method for calibrating 

paraments.  We initially determine the “directional sensitivity” of six DHSVM parameters – 

lateral conductivity (Kh), exponential decrease in Kh (Kexp), vertical conductivity (Kv), 

minimum resistance (MinRes), snow roughness (SnowR), and snow water content (SnowWC) – 

by multiplying the original parameter values by 0.25, 0.5, 2 and 4.  Based on the results from the 

first step, we determined that Kh, Kexp and Kv were the most sensitive when reproducing 

streamflow.  The next step was to use a set of Monte Carlo simulations for the multi-variate 

calibration with a Latin Hypercube (McKay et al., 1979) sampling method to get 256 

combinations of parameters across a range of distributions for the selected parameters, with the 

selection criteria for the parameter settings being a maximum ranked correlation. Following a 

Monte Carlo search for the selected parameters, our chosen simulation provided a correlation of 

0.838 and Spearman ranked correlation of 0.921 for all daily streamflow with the daily mean 

annual cycle (Figure A1) being 0.969 and 0.964 respectively, with the grey area in Figure A1 

representing the series of Monte Carlo simulations for calibration.  Due to potential errors in 

streamflow observation during the winter months when the gauge is covered  by snow and ice, 

percent bias calculated during the melt-season (MJJ) and full warm-season (MJJAS) were -

12.14% and -21.84%, respectively, suggesting satisfactory portrayal of daily streamflow 

estimates following the guidance of Moriasi et al. (2007).  While the given biases do show some 



 

 

deficiencies in the model under simulating total streamflow, this study does not aim to replicate 

observed streamflow but rather to understand the sensitivity to streamflow as snowpack 

distributions are altered.   

 

2.3 Design of model experiments 

For every year in the simulation period, six variations of initial May 1 SWE distributions were 

developed (Figure 2). Each variation had a progressively more uniformly distributed snowpack 

while conserving the same total basin mean SWE as in the control. In each smoothing increment, 

1/6th of SWE depth was transferred from locations with greater SWE than in the control, to areas 

with below average SWE, while conserving the total basin mean SWE in all cases.  It is of note 

that as SWE is redistributed, areas that were once barren (i.e. no snow) will now be snow-

covered, which not only creates a more spatially uniform SWE, but increased the snow coverage 

in the catchment.  This method ultimately produced a spatially uniform snowpack by the sixth 

iteration.  Table 3 provides a simple measure of uniformity, U, computed for each snowpack 

distribution: 

𝑈𝑈 = 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆
𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆

     (Equation 1)    

where 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆 is the spatial standard deviation of SWE and 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆 is the basin mean SWE. Smaller 

values of U correspond with increasing spatial uniformity for the initial snow conditions. The 

value of U scales linearly with the changing spatial standard deviation, given that the mean SWE 

remains constant in all cases. 

 

Transferring snow from wetter areas to drier areas while conserving total catchment-wide SWE 

in this way enables the experiment to investigate the effects of wind redistribution on the 

resulting hydrology in a controlled way. Notably, this framework allows for a straightforward 

method to isolate the effects of the spatial snowpack distribution, while not introducing 

additional uncertainties associated with complex parameterizations that would be evident in a 

snow distribution model. Despite being motivated by first order principles of increased snow 

density from increased temperatures and subsequent reduction in wind redistribution, these are 

still primarily ‘idealized’ experiments of snow distribution impacts on hydrology, thus changes 

to snow density are not accounted for. This design was chosen in order to isolate the role 



 

 

snowpack distribution uniformity and not introduce ancillary factors that could confound the 

basin response and complicate isolating the role of snowpack uniformity, 

 

For each simulation year, model simulations were initialized to the seven May 1 SWE 

distributions (one control distribution and six modified distributions) and forced with the 

observed meteorological forcing for their respective water-year, i.e. from May 1 through 

September 30. This experimental design provides an ensemble (i.e. variations of respective 

smoothing for each initial condition) of hydrologic model simulations initialized with the control 

and altered snowpacks for each year, while driven by identical forcing. Because this approach 

was applied for multiple years, 2001-2014, it lets us analyze different amounts of total SWE and 

different amounts of water year precipitation for each year (Figure 3). Ultimately, this 

interannual variability in SWE and precipitation leads to interannual variability in streamflow 

generation from the GLV. This variability in the primary sources of streamflow (SWE and 

precipitation) is an artifact of the natural variability present in the local climate, which can have 

inherent impacts on the processes governing streamflow generation. 

 

This study relies on direct observations of quantities such as streamflow and meteorology, as 

well as observationally-based reconstructions of peak SWE. Each of these contains observational 

uncertainty that are entrained within comparisons with model simulations, which also contain 

uncertainty. The observational products used in this analysis were not consistently available with 

quantitative estimates of their attendant uncertainties. Therefore, these uncertainties are 

implicitly carried through into the results and discussion sections which primarily focus on 

ensemble mean values to minimize the potential role of model uncertainty on the overall results. 

 

For each ensemble of snow distributions, confidence intervals are calculated from an empirically 

bootstrapped, 1000-member ensemble of daily SWE and runoff resampled from the simulations 

at each time-step. Day-of-year mean SWE/runoff are calculated for each of the 1000 ensemble 

members, and, for each day of the year, the 2.5th and 97.5th percentiles of the distribution of 

daily. These bootstrapped means are presented in the results as measure of model uncertainty for 

the simulation ensembles of each spatial snowpack distribution. 



 

 

3. Results  

The simulations of the various snowpack distributions highlight a few notable findings. First, the 

seasonal snowmelt pulse directly corresponds with the seasonal rise in runoff as is expected for 

this snowmelt dominated basin, however the increasingly uniformly distributed snowpacks melt 

at a more rapid rate than the control, as is seen in their sharper initial decline in Figure 4. In the 

control case, the melt-out of the snowpack (defined here as the first instance of basin mean SWE 

dropping to less than 5% of the respective May 1 SWE) occurs an average of 93 days (August 2) 

after May 1 model initialization. In contrast, the uniform snowpack melts out after 62 days (July 

1) on average, or 31 days earlier than the control simulation. Overall, the melt-out date was 

consistently earlier for increasing spatial uniformity relative to the control simulation. However, 

the response is highly non-linear. For example, when redistributing half of the SWE from deeper 

to shallow snowpacks, melt out was only 10 days earlier than the control simulation, whereas 

transferring the remaining half of the snow mass caused an earlier melt out by an additional 21 

days.  

  

The largest differences in streamflow occurred during the period of rapid snowmelt early in the 

melt-season (Figure 4c). Increased spatially uniform snowpacks show greater early-season 

streamflow generation. However, these streamflow anomalies importantly change sign towards 

the end of August on average, ultimately producing less cumulative streamflow as compared to 

the control distribution by the end of the water-year. The date of peak streamflow was minimally 

changed across snowpack distributions, with the uniform snowpack peaking only 8 days prior to 

the control. The uniformly distributed snowpack case results in only 1.1% less cumulative 

streamflow than the control case on average, with decreases as large as 7.5% in some years. It 

appears that the melt-season precipitation (i.e. seen in Fig-3) provides uneven inputs of water 

into the catchment from year-to-year, which masks the effects of snowpack spatial uniformity on 

total runoff. 

 

3.1 Model simulations in the absence of melt-season precipitation 

To isolate the relationship between snowpack distribution uniformity and snowmelt from the 

confounding factor of variability in melt-season precipitation, we performed a set of additional 

simulations in an identical manner to the initial simulations, except precipitation forcings are 



 

 

removed (i.e. set to zero) for the remainder of the post-May 1 water-year. Teufel et al. (2017) 

note that rain-on-snow events in the presence of frozen and snow-covered ground can lead to 

increased streamflow generation, a potential phenomenon that could obfuscate the role of spatial 

snowpack uniformity. We hypothesize that the subsequent delivery of precipitation (Figure 3) 

during the melt-season (e.g. amount, duration, intensity) is altering the manner in which the 

snowpacks are producing streamflow on a year-to-year basis. 

 

The removal of melt-season precipitation forcing in Figure 5 shows the same hallmarks as in 

Figure 4 with more rapid snowmelt for increasingly uniform snowpack distributions. Changes in 

the melt-out date are similar for this new set of simulations, with a difference of 32 days between 

the control and uniform distributions. The mean snowpack melt-out date for all snow 

distributions is shifted roughly two weeks earlier (14 - 15 days) by the exclusion of melt-season 

precipitation. Importantly, the initial spatial snowpack uniformity influence on the timing of melt 

out, that is the difference melt out date between the control and uniform cases, is shown to be 

independent of the presence of melt-season precipitation. 

 

The shape of the cumulative streamflow anomaly graph in Figure 5 is comparable to Figure 4, 

with the exception of clearer separation across experiments of increasingly uniform snowpack 

distributions. Compared with the 1.1% decline in Figure 4, in the absence of melt-season 

precipitation, there is an average decrease of 8.1% in total streamflow generation for the uniform 

distribution relative to the control distribution, a 7% difference from the previous set of 

simulations.  

 

When melt-season precipitation forcing is withheld, spatially uniform snowpacks produce less 

cumulative streamflow for all cases relative to the control simulation (Figure 5c). Reductions by 

as much as 13.2% in total streamflow generation are computed when using the mean snowpack 

distribution, a reduction that is 12% greater than the ensemble mean of simulations that include 

melt-season precipitation.  

 

The magnitude of the differences in cumulative runoff due to increasing degrees of snowpack 

spatial uniformity is most apparent in the simulations where the melt-season precipitation forcing 



 

 

is withheld. That is, the melt-season precipitation dampens the signal of the spatially uniform 

snowpack initial condition on cumulative runoff such that, when melt-season precipitation is 

applied as a forcing in the simulations, the mean difference in cumulative runoff between cases 

of spatial uniformity falls within the uncertainty of the interannual variability of runoff. The 

removal of melt-season precipitation allows us to identify a distinct inverse relationship between 

the initial snowpack spatial uniformity condition and the subsequent cumulative runoff that is 

generated.  

 

In contrast to the simulations that withhold melt-season precipitation, the previous simulations 

display instances when snowpacks with greater areal mean SWE increased streamflow for more 

uniform snowpack distribution.  This finding suggests that deeper snowpack years may have 

experienced enhanced melt-season precipitation that confounded the role of spatial snowpack 

uniformity in the presence of precipitation. While in the absence of melt-season precipitation, the 

effect of snowpack uniformity in reducing streamflow displays a dependency with the magnitude 

of snowpack for a given year (Figure 6). Years with lower mean SWE appear more sensitive to 

increased snowpack uniformity and tend to produce larger percent decreases in streamflow 

generation. The implications of this sensitivity are important in the context of climate warming, 

where smaller future snowpacks may be more sensitive to increasingly uniform distributions than 

deeper historical snowpacks. While there does appear to be a slight trend towards larger 

snowpacks showing resilience to spatial snowpack uniformity, there is still variability from year-

to-year. These differences largely occurred due to interannual variability in temperature and 

other forcings. 

 

4. Discussion  

Through the comparison of simulations with and without warm season precipitation, we find 

distinct changes in the streamflow generation for different levels of spatial snowpack 

uniformities. We further analyze our results to highlight the role of snowpack distributions and to 

propose a potential physical mechanism as to why changes in spatial uniformity impact 

streamflow generation. 

 

4.1 Randomized snowpack distributions 



 

 

Additional experiments were constructed to investigate the role of spatial uniformity on 

streamflow more generally.  In this experiment, we shuffled the spatial snow patterns for the 

control and the other six redistributed snowpack initial conditions, to create 20 randomly 

generated distributions for each level of uniformity (Table 3), excluding the uniform case since 

all distributions would be the same. This approach was chosen because it keeps the degree of 

uniformity, U, constant for each set of 20 random samples, while altering the elevational 

distribution of SWE, the position of different depths of SWE relative to vegetation and 

topography, as well as the locations of minimum and maximum SWE within the basin.  On 

average, the random distributions distribute snow more evenly throughout the basin, which has 

the effect of increasing the amount of snow at higher elevations (not shown) in comparison to the 

control-case, while also providing a wide-range of elevations for minimum and maximum SWE.  

Twenty random SWE distributions were generated at each level of spatial uniformity, from 

which DHSVM was run in the same manner as described in Section 2.3, to explore streamflow 

variation in response to this larger and more diverse sample of uniformity. 

 

Figure 7 shows that each set of the randomized variations generally produces comparable results 

to the initial analysis, i.e., in Figure 5. Importantly, the randomized simulations reflect a range of 

altered elevation distributions of SWE, the amounts of SWE in shaded regions, and the general 

prevailing meteorology (i.e. air temperature) for different SWE depths. By altering all of these 

aspects through the randomization of SWE, the role of spatial uniformity is more robustly 

evaluated, which supports the finding that uniformity is driving changes in melt and streamflow 

production. 

 

Further highlighting this point are the results from Winstral et al. (2002) in which a regression 

tree applied to model spatial snow distribution found wind redistribution to be a more important 

factor than elevation, solar radiation and slope of the terrain.  The relative agreement on the 

factors that impact snow distribution as well as govern melt in our manuscript is generally 

consistent with our results on the role snowpack uniformity. 



 

 

 

4.2 Discussion of physical mechanism 

A comparison of water balance storage and surface flux terms (Figure 8) allows us to interpret 

physical mechanisms behind the sensitivities in runoff production associated with snow 

distribution. Here we focus on differences between the control and completely uniform 

simulations for periods before (i.e. when the uniform distribution produces more streamflow) and 

after (i.e. when the control distribution produces more streamflow) the inflection point in Figure 

5.  

 

A potential first-order explanation for why the uniformly distributed snowpack behaves 

differently is its larger surface area of snow exposed to surface-atmosphere energy exchange; 

e.g. incident solar and longwave radiation and sensible heat flux, leading to increased 

atmospheric exposure per unit SWE, it is worth noting that snow coverage increases due to 

redistribution (see Sec. 2.3). Given that snowmelt is driven at the surface-atmosphere interface, it 

is intuitive that a spatially uniform snowpack would generate more snowmelt earlier in the 

snowmelt season and less in the late season.  Conversely, the control snowpack has both snow-

free areas and areas of persistent deeper snow accumulated in snow drifts. Within these drifts a 

significant volume of total snowpack water storage is buried beneath surface layers of snow and 

is therefore not exposed to the overlying atmosphere.  As the surface snowpack warms during the 

spring transition potential energy inputs to these deeper snowpack layers include conduction 

from overlying layers, advection from liquid water percolation, and latent heat exchange 

associated with re-freezing of vertically propagating liquid water.  These energy sources are 

relatively small in comparison to the aforementioned energy inputs that are available at the 

surface-atmosphere interface.  In addition, snowpack cold content varies as a function of 

snowpack temperature and SWE.  Hence, deeper drifts in the control snowpack would have 

greater cold content than thinner, more uniformly distributed snowpacks and therefore delayed 

snowmelt is expected with more heterogeneous snowpacks.  These differences are reflected in 

the increased snowmelt in the earlier period of Figure 8, where energy inputs more efficiently 

overcome the cold content of the uniform snowpack and lead to a larger early pulse of snowmelt.   

 



 

 

In comparing the two time periods highlighted by Figure 8, the potential influence of the 

uniformly distributed snowpack’s greater exposure to energy inputs per unit of SWE relative to 

the control case can be seen in water flux and storage terms. The early pulse of snowmelt in the 

uniform simulation leads to increases in soil moisture and decreases in the water-table depth (i.e. 

a water table closer to the surface), allowing for increased runoff efficiency and greater storage 

of water during the early season. While during the second time period when the control 

distribution produces more snowmelt due to deeper snow areas having longer melt times, there 

are opposite changes to all fluxes and storage terms.  

 

Existing research has largely focused on broad-scale patterns in runoff from snowmelt-

dominated watersheds, in comparison to rain-dominated watersheds (Berghuijs et al., 2014), as a 

function of time throughout the snow season (Barnhart et al., 2016, Musselman et al., 2017), or 

in the context of seasonal flood (Berghuijs et al., 2016) and drought prediction (Livneh and 

Badger, 2020). These studies generally rely upon large-scale models and data (~ 10 km scale), 

which are too coarse to resolve some of the important energy, water, and topographical forcings 

considered here, and so they only hint at dominant mechanisms.  

 

In sum, we hypothesize that spatially uniform snowpacks melt more quickly due to greater 

energy exposure per unit of SWE, leading to increased runoff and storage in the land surface 

early in the season, while the slower melt rate from the control distribution provides a more 

efficient runoff generation that extends later into the melt-season. 

 

4.3 Limitations and uncertainties 

While the results in this study are based on use of a hydrologic model in a single alpine 

catchment, there could be elements of the results that are model and/or catchment dependent; 

further highlighting the need for comparable investigations into the streamflow changes due to 

the spatial uniformity of the initial melt-season snowpack.  

 

Additionally, uncertainties due to meteorological forcing and snowpack reconstruction are 

present. Through the use of observed meteorology, there are inherent uncertainties associated 

with the collection and transmission of these data from remote locations such as the GLV; there 



 

 

is general confidence in the data but using an in-filling method to address missing data periods 

can lead to observed features not being captured correctly. While accounting for interannual 

variability in meteorology, there is a lack of interannual variability in the pattern of the snowpack 

distributions, this is due to the lack of overlapping years with the SWE reconstruction product. 

Notwithstanding, previous works have highlighted that the patterns of SWE distribution have 

some interannual consistencies (Erickson et al., 2005; Jepsen et al., 2012).   

 

Furthermore, removal of melt-season precipitation does allow for a more defined response to 

snowpack uniformity, but other elements of the observed meteorology that would be associated 

with a precipitation-free environment may be missed.  Particularly, this study did not take into 

account the associated changes to incoming shortwave radiation, present wind speed, soil 

temperature and other aspects that could alter snowmelt dynamics in the absence of melt-season 

precipitation.  Predicting associated changes to other meteorological variables in the absence of 

precipitation would have provided additional uncertainties to this study. While May 1 was 

chosen to represent the date of peak SWE following historical conditions, other initialization 

dates were not examined. A future exploration into SWE spatial uniformity across the melt 

season could be useful towards understanding sensitivities of runoff to uniformity through time. 

 

Lastly, these results suggest that the magnitude effect of the initial snowpack spatial uniformity 

on cumulative runoff generation is comparable to the magnitude of interannual variability of 

melt-season precipitation. This underscores the importance of spatial snowpack uniformity in 

influencing total runoff. Furthermore, there is a strong consensus across projections of future 

regional temperature increases, i.e., the physical mechanism that is likely to drive increased 

spatial uniformity of snowpacks. In contrast, projections of spring and summer precipitation 

change are more uncertain, particularly in western North America (Hayhoe et al., 2018). In 

addition, these results indicate that initial spatial snowpack uniformity is directly proportional to 

the timing of melt out independent of the presence melt-season precipitation. Therefore, spatial 



 

 

uniformity of snowpacks will remain an important consideration for water resource planning in 

snowpack dominated watersheds.  

 

5. Conclusion 

This study has investigated the role of spatial snowpack variability and potential uniformity in 

streamflow generation in the Green Lakes Valley watershed of the Niwot Ridge LTER. The 

DHSVM hydrologic simulations conducted here show that snowpacks with increased spatial 

uniformity are expected to reduce total streamflow relative to the control case, although melt-

season meteorology can have confounding impacts on this signal. Snowpack uniformity leads to 

greater exposure to incoming solar radiation at the snowpack surface and enhances the rate of 

snowmelt for the catchment. More explicitly, these simulations showed consistently earlier melt-

out dates independent of melt-out season precipitation, increased early season melt, decreased 

late season melt, reduced efficiency and ultimately decreased streamflow generation as a result 

of increasing snowpack uniformity. Importantly, these sensitivities appear to be heightened for 

shallower snowpacks, which has implications for climate change.  

 

While these results are presented independent of a changing climate, the Niwot Ridge LTER is 

expected to experience such changes. Kittel et al. (2015) notes that there is an observed 

precipitation trend of 60 mm year-1 decade-1 for our domain, there is also an observed 

temperature trend of 0.8°C decade-1 occurring simultaneously. A hypothesis worth addressing in 

future work could investigate the degree to which continued increases in precipitation could 

potentially offset the impact of increased temperature-driven evaporative demands on 

streamflow. While this region is experiencing increases in both precipitation and temperature, it 

is expected that other regions may warm with differing precipitation changes, such that resulting 

changes in streamflow generation could be investigated following a similar approach as was 

taken here. 

 

Although this study investigated a single alpine catchment, the principles of snowpack spatial 

uniformity and greater solar exposure relative to more heterogeneous snowpacks are expected to 

influence the water yield of other catchments, although the magnitude and sign of the 

sensitivities may vary under different prevailing climates.  We believe that this research 



 

 

underscores a pressing need for potential impacts of reduced spatial snowpack variability, 

particularly incorporating climate projection data and remotely sensed snow retrievals.  

 
Data Availability Statement 
The data that support the findings of this study are available from the corresponding author upon 
reasonable request. 
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Tables 
Table 1.  Description and sources of static model inputs. 
 

Data Notes Source 

DEM Sampled 10-
m resolution 
domain to 
produce 20-
m DEM for 
DHSVM 

U.S. Geological Survey, 2017, 1/3rd arc-second Digital Elevation 
Models (DEMs) - USGS National Map 3DEP Downloadable Data 
Collection: U.S. Geological Survey. 

Soil Types Nearest 
neighbor 
interpolation 
from native 
20-m 
SSURSGO 
data 

Soil Survey Staff, Natural Resources Conservation Service, United 
States Department of Agriculture. Web Soil Survey. Available 
online at https://websoilsurvey.nrcs.usda.gov/.  

Vegetation Nearest 
neighbor 
interpolation 
from native 
10-m grid 

Cline, D. 2019. Green Lakes Valley land cover classification, 
Niwot Ridge LTER, Colorado ver 2. Environmental Data 
Initiative. 
https://doi.org/10.6073/pasta/a585afc617269ce06652c559ffde2688 

Geology Resampled 
to match 20-
m DHSVM 
grid 

Cole, J.C., and Braddock, W.A., 2009, Geologic map of the Estes 
Park 30’ x 60’ quadrangle, north-central Colorado: U.S. 
Geological Survey Scientific Investigations Map 3039 

 
Table 2.  The five Niwot Ridge LTER observation stations and streamflow gage used in this 
study with their respective latitude, longitude and elevation. 
 
Name Latitude (°) Longitude (°) Elevation (m) 
Arikaree 40.049 -105.640 3798 
D1 40.059 -105.616 3743 
GL4 40.056 -105.617 3560 
Saddle 40.049 -105.592 3525 
TVan 40.053 -105.586 3480 
Streamflow Gage 40.049 -105.617 3560 

 
 



 

 

Table 3: characteristics of each level of uniformity analyzed in this study, including the 
uniformity, U, the spatial standard deviation and spatial mean SWE for each case. We note 
that smaller values of U correspond with greater snowpack spatial uniformity.  

Scenario U (unitless) Standard deviation of 
SWE (m) Mean SWE (m) 

Control 1.137 0.651 0.573 
1/6 0.947 0.543 0.573 
2/6 0.758 0.434 0.573 
3/6 0.568 0.326 0.573 
4/6 0.379 0.217 0.573 
5/6 0.189 0.109 0.573 

Uniform 0.000 0.000 0.573 
  



 

 

Figure Legends 
 
Figure 1. Map of the Green Lakes Valley catchment (outlined in black) within the Niwot Ridge 
LTER, shaded by elevation. Regional location of the Green Lakes Valley within the Western 
United States is shown in the inset. Locations of meteorological stations used to provide the 
DHSVM forcing data are shown (colored dots). 
 
Figure 2. Maps of (a) the mean SWE reconstruction product for the Green Lakes Valley 
catchment (Jepsen et al., 2012), (b-f) increasing iterations of redistributed mean SWE, and (g) 
mean SWE distributed uniformly over the catchment. 
 
Figure 3. Basin averaged May 1st SWE (blue) and total precipitation accumulated from May to 
September (gray) for each water year of the period of analysis (2001-2014). Dashed lines of the 
coinciding colors represent the median value for all of the years of record for both SWE and 
precipitation.   
 
Figure 4. Results from the control and snow-redistribution simulations with May through 
September precipitation forcing included. (A) Multi-annual mean of DHSVM simulated 
cumulative runoff (red) and basin averaged SWE (blue) from the control simulation are shown 
with solid lines. Uncertainty bands show the 95% confidence interval for daily mean runoff and 
SWE for all years in the period of analysis (2001-2014). For each time step, confidence intervals 
were calculated from an empirically bootstrapped, 1000-member ensemble of daily SWE and 
runoff resampled from the simulations. Day-of-year mean SWE/runoff were calculated for each 
of the 1000 ensemble members, and, for each day of the year, the 2.5th and 97.5th percentiles of 
the distribution of daily, bootstrapped means are shown as the bounding lines of the uncertainty 
bands. (B) Multi-annual mean SWE anomalies compared to the control simulations for each of 
the redistributed SWE simulations (colored lines) with uncertainty bands derived using the 
method described above. Vertical dashed lines, consistently colored by simulation, indicate the 
mean date of snowpack melt out for all years. (C) Multi-annual mean cumulative runoff 
anomalies compared to the control simulations for each of the redistributed simulations (colored 
lines) with uncertainty bands derived using the method described above. Horizontal lines along 
the right-hand vertical axis, consistently colored by simulation, indicate mean cumulative runoff 
for all years of analysis. 
 
Figure 5. Results from the control and snow-redistribution simulations with May through 
September precipitation forcing excluded. (A) Multi-annual mean of DHSVM simulated 
cumulative runoff (red) and basin averaged SWE (blue) from the control simulation are shown 
with solid lines. Uncertainty bands show the 95% confidence interval for daily mean runoff and 
SWE for all years in the period of analysis (2001-2014). Confidence intervals are calculated 
using the same method as described in the caption of Figure 4. (B) Multi-annual mean SWE 
anomalies compared to the control simulations for each of the redistributed SWE simulations 
(colored lines) with uncertainty bands derived using the method described above. Vertical 
dashed lines, consistently colored by simulation, indicate the mean date of snowpack melt out for 
all years. (C) Multi-annual mean cumulative runoff anomalies compared to the control 
simulations for each of the redistributed SWE simulations (colored lines) with uncertainty bands 



 

 

derived using the method described above. Horizontal lines along the right-hand vertical axis, 
consistently colored by simulation, indicate mean cumulative runoff for all years of analysis. 
 
Figure 6. Annual May 1st SWE (horizontal axis) compared to the simulated annual cumulative 
runoff normalized by the control experiment for the year of the simulation (vertical axis) for all 
years within the period of analysis (2001-2014). Each vertical line of dots represents the control 
and SWE redistributed simulations for a single year with May through September precipitation 
excluded. Values of normalized cumulative runoff less than 1 indicate a decrease in the total 
simulated streamflow compared to the control simulation.     
 
Figure 7. (A) DHSVM simulated cumulative runoff (red) and basin averaged SWE (blue) from 
simulations with the randomized variations of the control initial condition. (B) SWE anomalies 
compared to the control simulations for each of the randomized SWE simulations at different 
levels of spatial uniformity (colored lines). Vertical dashed lines (colored by simulation) denote 
the date of snowpack melt out for each simulation. (C) Cumulative runoff anomalies compared 
to the control simulations for each of the randomized and redistributed SWE simulations 
(colored lines). Horizontal lines along the right-hand vertical axis indicate the total cumulative 
runoff rather than the anomaly. 
 
Figure 8. (Upper panel) Difference in the multi-annual mean of snowmelt (depth) from the 
uniformly distributed SWE simulation compared to the control simulation. The red dashed line 
shows the inflection point where the difference between the two simulations changes signs. 
(Lower panel) Mean differences in the snowmelt (rate), runoff (rate), soil moisture (depth) and 
the water table depth from the uniformly distributed SWE simulation compared to the control 
simulation. Periods for which the means (and subsequent differences) are derived are divided by 
the location of the red dashed line.     



 

 

Appendix Figures 
 
Figure A1. Observed (black) streamflow for the daily cycle from 2001 to 2014.  The selected 
parameter set is highlighted in red, while the grey shaded area depicts the range of streamflow 
simulated from the Monte Carlo parameter selection. The top panel shows the daily average 
streamflow, whereas the bottom panel shows all days during the study period where missing data 
for the observations, denoted by gaps in the black line. 
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We evaluate the implications of 
scenarios where snow becomes 
more uniformly distributed due to 
increases in density and reduced 
wind redistribution as hypothesized 
under future warming. Hydrologic 
model results indicate decreases in 
streamflow resulting from greater 
exposure of more uniform 
snowpack to the atmosphere and 
solar inputs. The sensitivity of 
uniform snowpacks are greater for 
shallow snow cover, with 
implications for climate change.  
 




